• 6
    Grade 6 Standards
Top Mathematicians
  • Number Sense and Numeration
  • Geometry and Spatial Sense
    • 6.GSS.1
      Geometric Properties
      sort and classify quadrilaterals by geometric properties related to symmetry, angles, and sides, through investigation using a variety of tools (e.g., geoboard, dynamic geometry software) and strategies (e.g., using charts, using Venn diagrams);
      sort polygons according to the number of lines of symmetry and the order of rotational symmetry, through investigation using a variety of tools (e.g., tracing paper, dynamic geometry software, Mira);
      measure and construct angles up to 180� using a protractor, and classify them as acute, right, obtuse, or straight angles;
      construct polygons using a variety of tools, given angle and side measurements (Sample problem: Use dynamic geometry software to construct trapezoids with a 45� angle and a side measuring 11 cm.).
    • 6.GSS.2
      Geometric Relationships
      build three-dimensional models using connecting cubes, given isometric sketches or different views (i.e., top, side, front) of the structure (Sample problem: Given the top, side, and front views of a structure, build it using the smallest number of cubes possible.);
      sketch, using a variety of tools (e.g., isometric dot paper, dynamic geometry software), isometric perspectives and different views (i.e., top, side, front) of three-dimensional figures built with interlocking cubes.
    • 6.GSS.3
      Location and Movement
      explain how a coordinate system represents location, and plot points in the first quadrant of a Cartesian coordinate plane;
      identify, perform, and describe, through investigation using a variety of tools (e.g., grid paper, tissue paper, protractor, computer technology), rotations of 180� and clockwise and counterclockwise rotations of 90�, with the centre of rotation inside or outside the shape;
      create and analyse designs made by reflecting, translating, and/or rotating a shape, or shapes, by 90� or 180� (Sample problem: Identify rotations of 90� or 180� that map congruent shapes, in a given design, onto each other.).
  • Data Management and Probability
  • Patterning and Algebra
    • 6.PA.1
      Patterns and Relationships
      identify geometric patterns, through investigation using concrete materials or drawings, and represent them numerically;
      make tables of values, for growing patterns given pattern rules, in words (e.g., start with 3, then double each term and add 1 to get the next term), then list the ordered pairs (with the first coordinate representing the term number and the second coordinate representing the term) and plot the points in the first quadrant, using a variety of tools (e.g., graph paper, calculators, dynamic statistical software);
      determine the term number of a given term in a growing pattern that is represented by a pattern rule in words, a table of values, or a graph (Sample problem: For the pattern rule "start with 1 and add 3 to each term to get the next term", use graphing to find the term number when the term is 19.);
      describe pattern rules (in words) that generate patterns by adding or subtracting a constant, or multiplying or dividing by a constant, to get the next term (e.g., for 1, 3, 5, 7, 9, ..., the pattern rule is "start with 1 and add 2 to each term to get the next term"), then distinguish such pattern rules from pattern rules, given in words, that describe the general term by referring to the term number (e.g., for 2, 4, 6, 8, ..., the pattern rule for the general term is "double the term number");
      determine a term, given its term number, by extending growing and shrinking patterns that are generated by adding or subtracting a constant, or multiplying or dividing by a constant, to get the next term (Sample problem: For the pattern 5000, 4750, 4500, 4250, 4000, 3750, ..., find the 15th term. Explain your reasoning.);
      extend and create repeating patterns that result from rotations, through investigation using a variety of tools (e.g., pattern blocks, dynamic geometry software, geoboards, dot paper).
    • 6.PA.2
      Variables, Expressions, and Equations
      demonstrate an understanding of different ways in which variables are used (e.g., variable as an unknown quantity; variable as a changing quantity);
      identify, through investigation, the quantities in an equation that vary and those that remain constant (e.g., in the formula for the area of a rectangle, A = (b x h)/2 the number 2 is a constant, whereas b and h can vary and may change the value of A);
      solve problems that use two or three symbols or letters as variables to represent different unknown quantities (Sample problem: If n + l = 15 and n + l + s = 19, what value does the s represent?);
      determine the solution to a simple equation with one variable, through investigation using a variety of tools and strategies (e.g., modelling with concrete materials, using guess and check with and without the aid of a calculator) (Sample problem: Use the method of your choice to determine the value of the variable in the equation 2 x n + 3 = 11. Is there more than one possible solution? Explain your reasoning.).
  • Measurement
    • 6.MT.1
      Attributes, Units, and Measurement Sense
      demonstrate an understanding of the relationship between estimated and precise measurements, and determine and justify when each kind is appropriate (Sample problem: You are asked how long it takes you to travel a given distance. How is the method you use to determine the time related to the precision of the measurement?);
      estimate, measure, and record length, area, mass, capacity, and volume, using the metric measurement system.
    • 6.MT.2
      Measurement Relationships
      select and justify the appropriate metric unit (i.e., millimetre, centimetre, decimetre, metre, decametre, kilometre) to measure length or distance in a given real-life situation (Sample problem: Select and justify the unit that should be used to measure the perimeter of the school.);
      solve problems requiring conversion from larger to smaller metric units (e.g., metres to centimetres, kilograms to grams, litres to millilitres) (Sample problem: How many grams are in one serving if 1.5 kg will serve six people?);
      construct a rectangle, a square, a triangle, and a parallelogram, using a variety of tools (e.g., concrete materials, geoboard, dynamic geometry software, grid paper), given the area and/or perimeter (Sample problem: Create two different triangles with an area of 12 square units, using a geoboard.);
      determine, through investigation using a variety of tools (e.g., pattern blocks, Power Polygons, dynamic geometry software, grid paper) and strategies (e.g., paper folding, cutting, and rearranging), the relationship between the area of a rectangle and the areas of parallelograms and triangles, by decomposing (e.g., cutting up a parallelogram into a rectangle and two congruent triangles) and composing (e.g., combining two congruent triangles to form a parallelogram) (Sample problem: Decompose a rectangle and rearrange the parts to compose a parallelogram with the same area. Decompose a parallelogram into two congruent triangles, and compare the area of one of the triangles with the area of the parallelogram.);
      develop the formulas for the area of a parallelogram (i.e., Area of parallelogram = base x height) and the area of a triangle [i.e., Area of triangle = (base x height) � 2], using the area relationships among rectangles, parallelograms, and triangles (Sample problem: Use dynamic geometry software to show that parallelograms with the same height and the same base all have the same area.);
      solve problems involving the estimation and calculation of the areas of triangles and the areas of parallelograms (Sample problem: Calculate the areas of parallelograms that share the same base and the same height, including the special case where the parallelogram is a rectangle.);
      determine, using concrete materials, the relationship between units used to measure area (i.e., square centimetre, square metre), and apply the relationship to solve problems that involve conversions from square metres to square centimetres (Sample problem: Describe the multiplicative relationship between the number of square centimetres and the number of square metres that represent an area. Use this relationship to determine how many square centimetres fit into half a square metre.);
      determine, through investigation using a variety of tools and strategies (e.g., decomposing rectangular prisms into triangular prisms; stacking congruent triangular layers of concrete materials to form a triangular prism), the relationship between the height, the area of the base, and the volume of a triangular prism, and generalize to develop the formula (i.e., Volume = area of base x height) (Sample problem: Create triangular prisms by splitting rectangular prisms in half. For each prism, record the area of the base, the height, and the volume on a chart. Identify relationships.);
      determine, through investigation using a variety of tools (e.g., nets, concrete materials, dynamic geometry software, Polydrons) and strategies, the surface area of rectangular and triangular prisms;
      solve problems involving the estimation and calculation of the surface area and volume of triangular and rectangular prisms (Sample problem: How many square centimetres of wrapping paper are required to wrap a box that is 10 cm long, 8 cm wide, and 12 cm high?).