Remove ads and gain access to the arcade and premium games!
SubscribeUnlock harder levels by getting an average of 80% or higher.
Earn up to 5 stars for each level
The more questions you answer correctly, the more stars you'll unlock!
Each game has 10 questions.
Green box means correct.
Yellow box means incorrect.
Unlock harder levels by getting an average of 80% or higher.
Earn up to 5 stars for each level
The more questions you answer correctly, the more stars you'll unlock!
Each game has 10 questions.
Green box means correct.
Yellow box means incorrect.
Need some help or instruction on how to do this skill?
Want a paper copy? Print a generated PDF for this skill.
Share MathGames with your students, and track their progress.
See how you scored compared to other students from around the world.
Grade 3 - Patterning and Algebra
Standard 3.PA.1 - Analyze the sequence of increasing multiplication sentences with numbers up to 10,000. Find the missing numbers that complete the sequence.
Included Skills:
Patterns and Relationships
• identify, extend, and create a repeating pattern involving two attributes (e.g., size, colour, orientation, number), using a variety of tools (e.g., pattern blocks, attribute blocks, drawings) (Sample problem: Create a repeating pattern using three colours and two shapes.);
• identify and describe, through investigation, number patterns involving addition, subtraction, and multiplication, represented on a number line, on a calendar, and on a hundreds chart (e.g., the multiples of 9 appear diagonally in a hundreds chart);
• extend repeating, growing, and shrinking number patterns (Sample problem: Write the next three terms in the pattern 4, 8, 12, 16, ....);
• create a number pattern involving addition or subtraction, given a pattern represented on a number line or a pattern rule expressed in words (Sample problem: Make a number pattern that starts at 0 and grows by adding 7 each time.);
• represent simple geometric patterns using a number sequence, a number line, or a bar graph (e.g., the given growing pattern of toothpick squares can be represented numerically by the sequence 4, 7, 10, ..., which represents the number of toothpicks used to make each figure);
• demonstrate, through investigation, an understanding that a pattern results from repeating an action (e.g., clapping, taking a step forward every second), repeating an operation (e.g., addition, subtraction), using a transformation (e.g., slide, flip, turn), or making some other repeated change to an attribute (e.g., colour, orientation).
If you notice any problems, please let us know.